Action of serotonin on the hyperpolarization-activated cation current (Ih) in rat CA1 hippocampal neurons.
نویسندگان
چکیده
We studied the effects of serotonin (5-HT) on hippocampal CA1 pyramidal neurons. In current-clamp mode, 5-HT induced a hyperpolarization and reduction of excitability due to the opening of inward rectifier K+ channels, followed by a late depolarization and partial restoration of excitability. These two components could be dissociated, as in the presence of BaCl2 to block K+ channels, 5-HT induced a depolarization accompanied by a reduction of membrane resistance, whereas in the presence of ZD 7288 [4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride], a selective blocker of the hyperpolarization-activated cation current (Ih), 5-HT only hyperpolarized neurons. We then studied the action of 5-HT on Ih in voltage-clamp conditions. 5-HT increased Ih at -90 mV by 29.1 +/- 2.9% and decreased the time constant of activation by 20.1 +/- 1.7% (n = 16), suggesting a shift in the voltage dependence of the current towards more positive potentials; however, the fully activated current measured at -140 mV also increased (by 14.1 +/- 1.7%, n = 14); this increase was blocked by ZD 7288, implying an effect of 5-HT on the maximal conductance of Ih. Both the shift of activation curve and the increase in maximal conductance were confirmed by data obtained with ramp protocols. Perfusion with the membrane-permeable analogue of cAMP, 8-bromoadenosine 3'5'-cyclic monophosphate (8-Br-cAMP), increased Ih both at -90 and -140 mV, although the changes induced were smaller than those due to 5-HT. Our data indicate that 5-HT modulates Ih by shifting its activation curve to more positive voltages and by increasing its maximal conductance, and that this action is likely to contribute to the 5-HT modulation of excitability of CA1 cells.
منابع مشابه
Effects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices
Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...
متن کاملHyperpolarization-Activated Current (Ih) Is Reduced in Hippocampal Neurons from Gabra5−/− Mice
Changes in the expression of γ-aminobutyric acid type A (GABAA) receptors can either drive or mediate homeostatic alterations in neuronal excitability. A homeostatic relationship between α5 subunit-containing GABAA (α5GABAA) receptors that generate a tonic inhibitory conductance, and HCN channels that generate a hyperpolarization-activated cation current (Ih) was recently described for cortical...
متن کاملMinocycline did not prevent the neurotoxic effects of amyloid β on intrinsic electrophysiological properties of hippocampal CA1 pyramidal neurons in a rat model of Alzheimer’s disease
Introduction: Although aging is the most important risk factor for Alzheimer's disease (AD), there is evidence indicating that neuroinflammation may contribute to the development and progression of the disease. Several studies indicated that minocycline may exert neuroprotective effects in rodent models of neurodegenerative diseases. Nevertheless, there are also other studies implying that ...
متن کاملSerotonin 5-HT7 Receptor in the Ventral Hippocampus Modulates the Retrieval of Fear Memory and Stress-Induced Defecation
BACKGROUND Patients with posttraumatic stress disorder or panic disorder are often troubled by inappropriate retrieval of fear memory. Moreover, these disorders are often comorbid with irritable bowel syndrome. The main aim of the present study is to elucidate the involvement of hippocampal serotonergic systems in fear memory retrieval and stress-induced defecation. METHODS AND RESULTS Microi...
متن کاملHomeostatic scaling of neuronal excitability by synaptic modulation of somatic hyperpolarization-activated Ih channels.
The hyperpolarization-activated cation current (Ih) plays an important role in determining membrane potential and firing characteristics of neurons and therefore is a potential target for regulation of intrinsic excitability. Here we show that an increase in AMPA-receptor-dependent synaptic activity induced by alpha-latrotoxin or glutamate application as well as direct depolarization results in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 11 9 شماره
صفحات -
تاریخ انتشار 1999